
Programming all the C64 Tricks

Linus Åkerlund

Text formed/sorted and pdf creation

by Matthias

Last Changes

25. Aug. 2022

Table of Contents

1 Preface..4

2 C64..5

2.1 The CPU...5

2.2 The VIC..5

3 Learning Machine Language...6

3.1 Flashing the Border..7

3.2 Clearing the Screen...8

4 Tools...11

4.1 Using a Monitor..11

4.2 Using an Assembler...12

4.3 Cross Assemblers and Emulators..13

5 Programming the Effects...14

5.1 Graphics...17

5.2 Sprites..17

 Sprite Basics...17

 Sprite Pointers...18

5.3 Important Addresses..19

 Sprite Example..20

5.4 Character Graphics..22

 Screen and Colour RAM..22

 Changing Character Set..23

 Altering the Character Set in Realtime...24

5.5 Bitmap Graphics...26

 The Concepts of Bitmap Graphics..27

 The Screen Layout..29

 Displaying Bitmaps..30

5.6 Interrupts..31

 Why Interrupts..31

 What is an Interrupt?..32

 How to Implement Interrupts..33

1/63

 Playing music again..36

 Using More Than One Interrupt Per Frame..36

 Stable Raster Interrupts...37

 NMIs...39

5.7 Detecting New/Old CIA 6526...40

 ..40

5.8 Interesting Effects...42

 Text Scroller..42

 Raster Bars..44

 Opening the Top and Bottom Border..45

 FLD...46

 Sprite Multiplexer...46

 Tech-tech...47

 FLI, AFLI, IFLI..48

 Opening the Side Border..48

 Plasmas, Bumpmappers, 3D Effects...49

 The Rest..50

 An Exercise...50

5.9 Tools...52

 Cartridges..52

 Packers and Crunchers..52

 IRQ loaders...53

 Sprite, Char, Graphics editors...53

 Sine editors etc..54

 Music editors..54

 Text Editors and Scroll Text Writers...55

 Noters..55

 Other Tools...55

5.10 Common Pitfalls...56

 Final Cartridge..56

 Graphics at $1000 or $9000..56

 Garbage in Vertical Border or Behind FLD..56

2/63

 Everything Works Until I Pack It!..57

6 A Few Words About Optimization..58

6.1 What to Optimize..58

6.2 How to Optimize Computations...58

 Removing Instructions..59

 Substituting Instructions...59

 Loop Unrolling...60

 Use the Zero Page...61

 Using Tables...61

6.3 Other Optimizations...61

6.4 Other Ways to Make Code Faster..62

6.5 Re-using Stuff...62

 Contacting the Author...63

 Copying this document...63

3/63

1 Preface

I think it is very important that information and data are free, and not restricted by

legal claims of any person or groups, thus preventing claims of power over other

people, as well as the restriction of creativity. Therefore, I thank everyone who

promotes the public domain and makes it one of the most important forms of

publication.

Matthias

4/63

2 C64

2.1 The CPU

The CPU in the C-64 is a 6510, which is a variant of the 6502. It's a very nice

processor to program. It has a simple instruction set, so it's easy to get started. It has

been studied a lot and there's lots of documentation available. It uses memory

mapped I/O, which means that performing I/O (like showing stuff on the screen) is no

different than putting a value at some arbitrary memory location.

Of course, the 6502 only has three registers (not counting the PC, SP and Status

register), which can make it a pain in the ass to implement complicated algorithms

on, but on the other hand, it sure makes you appreciate a modern RISC processor

with dozens of general-purpose registers.

2.2 The VIC

The VIC (the graphics chip) is very nice. The VIC has a lot of interesting bugs (or

features, depending on how you look at it), which means you can create amazing

effects that are unique to the C-64. It's all about learning about the hardware and

learning how to use it to fit your needs, not just blindly following a specification

document.

Most of these effects are achieved through well-timed modifications of VIC registers.

That's one of the things are most important in a program: to use perfectly timed code.

Creating raster bars on the Amiga is easy: just put some values in the copper list. On

the C-64, on the other hand, you have to change $d020 and/or $d021 at exactly the

right time, or you'll get flickering bars.

5/63

3 Learning Machine Language

First of all, you need to learn 6502 assembly language. I'm not going to include a

tutorial on assembler programming here. I'll just give a few examples and give

pointers to some other good documents.

I'd suggest you do the following to learn assembler: get a tutorial, and try to grasp the

general structure of it, learn some of the more important instructions, and then get a

good reference, like “Programmer's Reference Guide”. You shouldn't read the whole

book, as most of it explains how to program the C-64 in BASIC. But the summary of

the opcodes is nice, so that's a good reason to keep the book.

There's a pretty nice assembler tutorial in the first couple of issues of Commodore

Hacking.

When you've learned some assembler, you need to know which memory addresses

to poke values into to make interesting things happen. As the C-64 uses memory

mapped I/O, you perform I/O operations just by putting values into memory locations,

or reading from memory locations. What you need is a memory map, that tells you

which addresses are special, and which ones are just RAM. “Mapping the C-64” is a

nice and detailed memory map.

If you think you're really smart, you shouldn't even need a tutorial on assembler, all

you need is a reference document and some examples. So let's look at some really

simple examples.

6/63

3.1 Flashing the Border

A very simple effect, that shows how you can achieve some things on the C-64, is to

make the border flash in different colours. Here's the code to do it2):

* = $1000

loop: inc $d020 ; increment $d020

 jmp loop ; jump to label loop

That was a short program, wasn't it? If you type in and run this program3), you will

see the border flashing wildly. If you're using an assembler like Turbo Assembler or

AssBlaster, you should just have to tap the RESTORE key to get back to the

assembler.

Let's explain exactly what the program does. On the first line, we simply tell the

assembler that the machine code it creates should start at memory address $1000

(1000 hexadecimal, which is the same as 4096 in the decimal number system). This

is Turbo Assembler syntax. If you're using some other assembler, consult the

documentation.

The second line has a label, loop, which is just a way to name that memory location,

ie. the one where the instruction inc $d020 starts. As we have told the assembler to

assemble the code to address $1000, we know that what the label loop represents is

actually $1000.

After the label comes an instruction, inc $d020, which tells means “increment

whatever value is at the address $d020 in place”. This is the same thing as loading

the value from $d020 (using the instruction lda $d020), adding 1 to it (adc #$01) and

then storing it in the same address (sta $d020). Why do we do this? Because the C-

64 has memory mapped I/O, and the adress $d020 actually represents the border

colour. So by putting different values in $d020, we change the colour of the border.

7/63

https://codebase64.org/doku.php?id=base:demo_coding_introduction#fn__3
https://codebase64.org/doku.php?id=base:demo_coding_introduction#fn__2

So if it was initially black (value 0), it will be white (value 1) after executing the

instruction inc $d020.

Then we come to the last line, which says jmp loop. When the program flow reaches

this line, it jumps to the adress corresponding to the label loop and keeps executing

instructions there. In our case, it will jump back to the previous line and execute inc

$d020 again. Then it will again reach the jmp loop line, go back, increment the border

colour etc., forever. Or rather, until we press RESTORE, which will take us back to

the assembler, or if we reset the computer or whatever.

So, now you know how to flash the border. If you use some other address than

$d020, you can change other things. Some addresses will just give weird results,

others will give sane results. If you use $d021 instead of $d020, the main screen will

flash instead.

3.2 Clearing the Screen

Let's just take another simple example, that shows some other instructions, and

actually does something useful. What we'll do is to clear the screen. That may not

sound very interesting, but it's something you'll need to do at the beginning of most

parts you write, so it's actually useful. And of course, after you have cleared the

screen, you can just jump to some other routine, like eg. the one that flashes the

border.

8/63

Here's the code to clear the screen:

* = $1000

 lda #$00 ; Put the value 0 in accumulator

 sta $d020 ; Put value of acc in $d020

 sta $d021 ; Put value of acc in $d021

 tax ; Put value of acc in x reg

 lda #$20 ; Put the value $20 in acc

clrloop: sta $0400,x ; Put value of acc in $0400 + value in x reg

 sta $0500,x

 sta $0600,x

 sta $0700,x

 dex ; Decrement value in x reg

 bne clrloop ; If not zero, branch to clrloop

So, how does the program above clear the screen? The comments should explain

most of what goes on, but here's an overview:

 We start by setting the border and background colours to black. The value 0 means

black, and, as you probably remember from the last example, $d020 and $d021 are

the addresses that control the colour of the border and the main screen.

 Now we want to remove all the characters from screen memory. Screen memory is

by default located at $0400, and is $400 bytes long4), so we need a loop to clear it

all. We clear it by setting every character position to $20, which is the character code

for the space character.

 Note how cleverly we handle the loop index, in the X register. We start by setting it to

0. Then we decrement for each iteration and then compare it so 0. The first time we

decrement it, it will wrap around to $ff, and then it will go all the way down to 0 again.

9/63

https://codebase64.org/doku.php?id=base:demo_coding_introduction#fn__4

If there's anything about this test program that you don't understand, look up the

instructions and the various addressing modes in your 6502 assembler reference.

Note that this program won't behave very well if you just type it in and run it, because

it doesn't really end. After the loop has finished, it will just happily get whatever is at

the address after the loop and try to execute it as an instruction. That will probably

not work very well, and something weird will happen. You will have to figure out

yourself how to make it behave. One idea is to end this program by appending the

border flashing code from the previous example.

10/63

4 Tools

I need to introduce some tools. The necessary tools are a monitor and/or an

assembler. You can choose to do your programming either in a monitor or an

assembler. Which choice is the best is up to you. People have different opinions, but

these days most people would probably say that an assembler is the best choice,

because it makes programming more easy, as you can move stuff around, insert

code into already existing code, add comments and use labels. On the other hand, if

you program in a monitor, you know exactly where in memory your code is and you

know where the page borders are, something which is really important when it comes

to writing code that needs perfect timing.

Anyway, I'll try to describe how you can do some stuff with a monitor and with an

assembler. All the example code in this text is in Turbo Assembler format, so maybe

it's easiest for you to use Turbo Assembler to start with. The reason why I use Turbo

Assembler format is that most people in the scene use Turbo Assembler, and I use it

myself.

4.1 Using a Monitor

The monitor I'll describe here is a pretty standardized one, and the commands

described should work on most monitors, like the ones in the Action Replay and Final

Cartridge cartridges. There are some exceptions, like S-Mon, and if that's the only

monitor you have, you'll have to find out how it works on your own.

To write new code, you type in a line like

.a 1000 lda #$00

What this does is that it assembles the instruction lda #$00 and puts the resulting

machine code at the address $1000. You can now simply type the next line of code,

as the monitor itself should now give you a line that looks like this:

.a 1002

11/63

That is, the monitor itself calculates where you want to put the next instruction, so if

you want to type in a whole program, you only have to issue the a command once

yourself.

To start a program, you simply jump directly it, using the g command, eg.:

.g 1000

This will jump directly to the address $1000. To look at the code in memory, eg. the

code you've already written, use the d command, like this:

.d 1000

This will disassemble the code in memory, starting at $1000. Different monitors will

handle this differently, but most monitors should let you scroll through the code, using

the cursor keys.

There are lots of more monitor commands, but this isn't a manual for machine code

monitors, so I'll leave the rest to you.

4.2 Using an Assembler

Learning to use an assembler may be a bit more difficult than learning to use a

monitor, but most people would probably think that it's easier to use an assembler

than a monitor. When you've loaded and started Turbo Assembler (sys $9000), you

end up in the editor, in which you write code. The syntax is just like the exemples in

this text.

Most commands in Turbo Assembler are invoked by pressing ← , followed by some

other key. To assemble a program, use ← - 3. This will assemble the program, and if

you press s just after the assembly, the program is started automatically. When you're

in the program, you can get back to Turbo Assembler by pressing RESTORE5). If

that doesn't work, you can reset and type sys $9000, which should bring you back,

unless you've managed to overwrite the memory of Turbo Assembler.

Some other nice commands are:

12/63

https://codebase64.org/doku.php?id=base:demo_coding_introduction#fn__5

 ← - 5 - assemble to object file on disk

 ← - s - save source to disk

 ← - l - load source from disk

 ← - 1 - exit to basic

The rest you'll have to figure out for yourself. There are documents available on the

web about how to use Turbo Assembler. There are also lots of different versions

floating around, some of which support macros and some of which support

undocumented opcodes. You can try different versions to see which one you like

best, but for now it shouldn't matter which version you use.

4.3 Cross Assemblers and Emulators

You can also use a cross assembler, which is a program that does the assembly for

you on some other computer, like an Amiga or a PC, and then you can transfer the

machine code to your C-64 and run it. You can also run your code in an emulator,

instead of on a real C-64. You should always test your code on the real thing before

releasing, though, because there are some things that the emulators still can't

emulate (like the $d020 bug and some sprite stuff).

13/63

5 Programming the Effects

Finally, we get to the interesting stuff. Now, there are a lot of things you need to know

about if you're going to write some code, so we'll have to decide where to start. A

program consists of graphics, sound and code. Of course, in this document we'll

concentrate on producing the code, but you'll still need to know how to display

graphics and play sounds.

The sound in most games is music, and playing music produced with some music

editor, like DMC or JCH's editor, is very easy. You don't really need to make the

music yourself either, you can always use someone else's music, as long as you give

credit to the person who did the music. I'll show you what to do to play a tune in an

example below, but first there are some basic concepts we need to cover, like

synchronizing things with the screen refresh.

As playing music is so easy (unless you're going to do something really fancy), we'll

concentrate on coding graphics effects, because that's really everything you need in

a program.

Of course, if you make a multi-part program that can't be squeezed into memory,

you'll need to load parts from disk. You don't have to write a loader yourself, though,

as there are some very good loaders around already.

Cryptic header, right? $d012 might be the most important address of them all, when it

comes to programming on the C-64. $d012 has two different functions:

 When read, it returns the number of the current raster line.

 When written, it is used to set the number of the line where the next raster interrupt

will occur.

14/63

We'll get back to raster interrupts later. You need to know about $d012 to understand

them, so pay attention to the stuff in this section! The first item above is interesting,

but it may not be obvious why it is interesting.

The current raster line is the line that is currently being redrawn on your screen. The

whole screen is redrawn 50 times per second6). Each time it is redrawn from top to

bottom, from the left to the right. So, if you want something to happen 50 times per

second, all you have to do is to check the current value of $d012, and when it

reaches a certain value, call the routine that performs the desired task. When

finished, go back to checking $d012.

Now, there are 318 raster lines on a PAL machine, and one register can only store

values between 0 and 255, so you need another bit to represent all 318 lines. That bit

is bit 7 of $d011. So, bit 7 of $d011 is really bit 8 of $d012. Does that sound

confusing? In that case, read this paragraph a couple of more times. So, if bit 7 on

$d011 is set, $d012 represents raster lines greater than 255 ($ff), otherwise the lines

between 0 and 255.

If you want to take the easy way out, and you don't need to synchronize to some

specific part of the screen, use a $d012 value greater than $40, because $ff + $40 =

$13f = 319. So you'll never get a value greater than $3f if bit 7 of $d011 is set.

I'll show how you can use $d012 with an example:

 * = $0801

 lda #$00

 tax

 tay

 jsr $1000 ; initialize music

mainloop: lda $d012 ; load $d012

15/63

https://codebase64.org/doku.php?id=base:demo_coding_introduction#fn__6

 cmp #$80 ; is it equal to #$80?

 bne mainloop ; if not, keep checking

 inc $d020 ; inc border colour

 jsr $1003 ; jump to music play routine

 dec $d020 ; dec border colour

 jmp mainloop ; keep looping

Now, before you try this program out, you'll need to have a tune loaded into memory

at $1000. Most tunes, intros and what have you are located at $1000, so you just

need to rip a tune, or get it some other way. The code before the mainloop just

initializes the tune, ie. sets all registers to 0, and then jumps to the initialization

routine. You don't have to know what the music routine does, but what it actually

does is that it resets the registers of the SID chip.

After the initialization we move directly into the main loop. What the main loop does is

that it loads the value from $d012, compares it to $80 (128 decimal, somewhere in

the middle of the screen), and if it's not $80, it jumps back to where it began, ie. to

loading the value from $d012.

Now, as soon as the raster beam reaches line $80, the inner loop is exited, and we

end up at the line that says inc $d020. What we do is that we increment the border

colour, jump to the music play routine, which executes and returns, and then we

decrement the border colour and jump back to the main loop. Why do we change the

border colour? Because it's a way to visualize how much time the music player

routine takes. You'll actually not only see how much time it takes (in raster lines), but

also where on the screen you're playing it, ie. where the raster beam is when you're

in the music player routine.

In this example we've learned two things:

16/63

 how to use $d012 to synchronize things with the screen refresh, and

 how to play music.

We will later show that this music player routine is in no way perfect, but it's a good

illustration of some concepts, and it works pretty well. You should now be able to

figure out for yourself how to do raster bars. The trick is that you wait for a certain

raster line, then change the background colour (if you're on the normal screen, you

have to change both $d020 and $d021, if you're in the upper or lower border, you

only have to change $d020). You need pretty good timing to do that, but with a

hardcoded delay between the colour changes, it should work well with code similar to

the above example.

5.1 Graphics

Now it's time to move on to some more interesting stuff, making things happen on the

screen. Of course, things have been happening with the screen in all the above

examples, but not in a very controlled way.

To get things to happen on the screen, you need to know which VIC registers to put

which values into. There's also the screen memory, which is normally located at

$0400, and the colour memory, which is located at $d800, and works like the screen

memory, but doesn't contain character codes, but colour values of the characters on

the screen. But the VIC is the most important thing, so we'll start with some VIC

basics.

5.2 Sprites

Sprite Basics

Sprites can be used for lots of cool things. What's nice about them is that they can be

moved around on the screen, without affecting the background. As you probably

17/63

know already, the C-64 has 8 hardware sprites, so you can have 8 things moving

around simultaneously, or synchronize their movement to make bigger objects move

around the screen.

You probably know that there are ways to get more than 8 sprites on the screen, but

we'll go through the basics before we reveal that trick. The basics of sprites consist of

the following:

 displaying them,

 setting their position,

 changing their shape and

 changing their colour.

There are a number of things you need to do in order to make a sprite appear on the

screen. You need to point it at a chunk of data, that defines what it should look like.

Then you need to set the x and y coordinates. Of course, you probably also want to

set the colour of the sprite. And, last but not least, you need to turn the sprite on. This

is all the stuff that is listed above, and this is everything you need to be able to do to

do some basic sprite effects, like moving them around on the screen, animating

them, etc.

Sprite Pointers

The sprite pointers, ie. the adresses that contain the pointers to where the graphics

data that is displayed on the screen as sprites, are located after the end of the screen

memory, which is usually located at $0400. The screen memory takes up exactly

1000 bytes (40 times 25 characters), so the last 24 bytes of the memory from $0400

to $0800 are free. The last 8 ones of these are the sprite pointers, and the 16 bytes

before the sprite pointers aren't used at all, unless I'm completely mistaken.

So, the byte at $07f8 is the sprite pointer for the first sprite. Now, how do we fit a

pointer into one byte? To represent an address in memory, we need two bytes. But

18/63

sprite pointers are handled in a special way. First of all, you only point to sprite data

that is located in the same VIC bank as the one where you keep the screen memory.

There are four VIC banks, $0000-$3fff is the first one, the one that's used by default.

A sprite takes up 63 bytes of data, but have to be aligned to 64 bytes, so you can put

sprite data starting at adresses $0000, $0040, $0080, $00c0, $0100 etc.

So, how many sprites can you fit into one VIC bank? 256. And how many numbers

can a byte represent? 256. Aha! Now we can understand how the sprite pointers

work: if you set a sprite pointer to 0, it will point to the address $0000, in the current

VIC bank. If you set it to 1, it will point to $0040. If you set it to $80, it will point to

$2000, and if you set it to $c0, it will point to $3000. Easy, isn't it? So, let's say you

want to do a simple animation, consisting of 8 sprites, with the sprite data placed at

$2000 (up to $21ff). You start by putting the value $80 into $07f8, then change it to

$81, then $82, and so on up to $87, then you'd start over from $80.

5.3 Important Addresses

Now we move on to how you set coordinates and colours and turn on sprites. Turning

the sprites on is simple. The sprites are numbered from 0 up to 7. The sprite whose

pointer you set when you poke values into $07f8 is 0, the one at $07f9 is 1, and so

on. You turn on the sprites by setting the corresponding bits in $d015. So, to turn on

sprite number 0, you poke the value 1 into $d015. To turn on sprites 0 and 1, put 3 in

$d015.

Setting the coordinates of the sprites are equally simple, with one small catch. The x

coordinate registers are $d000 (sprite 0), $d002 (sprite 1) and so on, and the y

coordinate registers are $d001, $d003 etc. As these registers can only store one byte

each, you can only set coordinates between 0 and 255. But the visible portion of the

screen is 320 pixels wide! The solution is that there's an 8th bit for each x register in

$d010. So, if bit 0 in $d010 is set, sprite 0's x coordinate is 256, plus the value in

$d000. This might sound a bit complicated, but you'll get used to it pretty quickly.

19/63

Setting the colours is the easiest part. For single colour sprites, you just poke the

colour value of each sprite into the addresses $d027, $d028 etc. Read your favourite

VIC reference for information on other stuff that you can do with sprites…

Sprite Example

Here's an example that moves a sprite around on the screen:

 * = $0801

 lda #$01

 sta $d015 ; Turn sprite 0 on

 sta $d027 ; Make it white

 lda #$40

 sta $d000 ; set x coordinate to 40

 sta $d001 ; set y coordinate to 40

 lda #$80

 sta $07f8 ; set pointer: sprite data at $2000

mainloop

 lda $d012

 cmp #$ff ; raster beam at line $ff?

 bne mainloop ; no: go to mainloop

 lda dir ; in which direction are we moving?

 beq down ; if 0, down

 ; moving up

 ldx coord ; get coord

 dex ; decrement it

 stx coord ; store it

 stx $d000 ; set sprite coords

20/63

 stx $d001

 cpx #$40 ; if it's not equal to $40...

 bne mainloop ; just go back to the mainloop

 lda #$00 ; otherwise, change direction

 sta dir

 jmp mainloop

down

 ldx coord ; this should be familiar

 inx

 stx coord

 stx $d000

 stx $d001

 cpx #$e0

 bne mainloop

 lda #$01

 sta dir

 jmp mainloop

coord

 .byte $40 ; current x and y coordinate

dir

 .byte 0 ; direction: 0 = down-right, 1 = up-left

That's a bit more code than in the previous examples, but it shouldn't be hard to

understand. Just read the code and comments and you should be able to understand

it.

If you type in and run the example program (you should), you'll notice that the

movement isn't very smooth, so you'll have to fix it. The question to ask is why it's

21/63

moving so jerky. The thing is that we haven't turned off timer interrupts. This means

that sometimes we'll be in the kernal interrupt handler while we're passing raster line

$ff, which means we'll miss it, and the sprite movement won't be updated until the

next frame. You'll learn more about interrupts later.

A good exercise, to get your hands dirty with some more interesting sprite

programming, would be to display several sprites at once, and make them move

according to a sine table. With the help of your friend $d012, you should also be able

to make a multiplexer, if you're really ambitious. You've got all the tools, now all you

have to do is to think it up and express it in code.

5.4 Character Graphics

Sprites isn't the only way to display graphics. Our next topic is character graphics.

You might have tried to draw something using the built-in character set. That's not

very easy, and the results usually aren't all that good. Of course, you don't have to

use the built-in character set. Using a character set editor, you can draw your own

character set, and more effects than you can imagine are implemented using

character graphics. They don't even have to look like characters, if the trick is (as it

often is) to update the character set in realtime.

Before we get into those kinds of tricks, we'll do what we usually do and go through

the basics first.

Screen and Colour RAM

As you should already know (from reading the section on learning ML), you change

characters on the screen by putting the character values into screen memory. Screen

memory is $03e8 bytes long and is located at $0400, unless you move it somewhere

else. The screen codes aren't the same as the PETSCII codes you use for normal

text, so if you want to prepare text that should be put on the screen, make sure you

save it as screen codes.

22/63

Now, putting characters on the screen is cool, but it gets even cooler if you can give

each character its own colour. You can do this by poking the colour values into colour

RAM, which is always located at $d800 (you can't move it).

So, let's say you want the letter A to appear in the upper left corner of the screen, and

you want it to be yellow. What do you do? You poke the screen code for A into screen

memory, ie. put the value 1 into memory position $0400, and put the value for yellow,

which is 7, in $d800.

Changing Character Set

The built-in character set isn't so hot, so if you're going to display text, you should

usually load your own character set. Fortunately, this is very easy, and you can

control the locations of both the character set and the screen memory with one VIC

register: $d018. You put the upper parts of two addresses into this register: the four

most significant bits of the 14 bit7) address of the screen memory in the four high

bits, and the four most significant bits of the 14 bit address of the character set in the

lower four bits. Confused? Let's take an example…

Screen memory is $0400 bytes long, and it has to start on an address that is a

multiple of $0400, so it can start at $0000, $0400, $0800, $0c00 etc. As I said, it's

located at $0400 by default. A character set is $0800 bytes long, and has to start on

an address that is a multiple of $0800, so it can be located at $0000, $0800, $1000,

$1800 etc. Now, let's say we want screen memory to be where it usually is, at $0400,

and we have a character set at $2000. We want the four most significant bits of the

14 bit address $0400, which is 1 (in binary, $0400 is 0000 0100 0000 0000, and if

you count 14 bits from the right, you get 00 0100 0000 0000, of which 0001 are the

four most significant bits). We also want the four most significant bits of the 14 bit

address $2000 (the character set). In binary, $2000 is 0010 0000 0000 0000, which

means the four most significant bits of the 14 bit address is 1000, which is 8.

So, what do we actually store in $d018? We want 1 in the four most significant bits

and 8 in the four least significant bits, ie. $18.

23/63

https://codebase64.org/doku.php?id=base:demo_coding_introduction#fn__7

Now, I may have made this a bit too complicated. It's really not that difficult. Here's a

trick: to find out which value to store in $d018, just count the number of $0400

chunks until the start of the address you're interested in. If your screen memory

should start at $1800, you count $0000, $0400, $0800, $0c00, $1000, $1400. That's

6, so you use 6 in the upper four bits of $d018. Use the same values for the

character set, but put it in the lower four bits of $d018.

Altering the Character Set in Realtime

I mention above that you can make interesting effects by altering the character set in

realtime. How do you do this? Well, if you've specified that you want your character

set at $2000, you can start poking values in the addresses from $2000 to $2800, and

see what happens. As you're altering the character set that's used for displaying

what's on the screen, the things on the screen will change immediately. You don't

have to change anything in screen memory, just in the character set.

A classical example of an effect that you can do by poking data into a character set is

a DYCP (Different Y Character Positions). A DYCP is a scroll text where the letters

move up and down, independent of each other. You can figure out how to do it

yourself, or read the article about it in Commodore Hacking.

An easier exercise than writing a DYCP would be to create some animated graphics

by changing the character data. You can also use this to scroll text without using

$d016, by ROLing the char data through character memory…

Here's a simple example program, that doesn't really do much, except illustrate what

I've just written. It sets the position of the character set to $2000, and then alters it in

realtime. Note that I'm using $d012, as always.

* = $0801

 lda #$00 ; black

24/63

 sta $d020 ; border background colour

 sta $d021 ; screen background colour

 tax ; set X to 0 too

clrscreen ; set all char codes to 0

 sta $0400,x ; on the screen

 sta $0500,x

 sta $0600,x

 sta $0700,x

 sta $2000,x ; and set charset data to 0

 dex

 bne clrscreen

 lda #$18 ; screen at $0400, chars at $2000

 sta $d018

mainloop

 lda $d012

 cmp #$ff ; on raster line $ff?

 bne mainloop ; no, go to mainloop

 ldx counter ; get offset value

 inx ; increment it

 cpx #$28 ; if it's $28, start over

 bne juststx

 ldx #$00

juststx

 stx counter

 lda $2000,x ; get byte nr x from chardata

 eor #$ff ; invert it

25/63

 sta $2000,x ; store it back

 jmp mainloop ; keep going...

counter

 .byte 8 ; initial value for counter

Some small things in the example might have to be explained. The reason why I'm

counting to $28, and not just 8 (which would be sufficient for inverting every byte that

make up the character 0), is so that it won't be too fast to see what's going on. The

reason why we're poking stuff into $2000 and up is that we're using character number

0. The data for char 0 starts at $2000, the data for char 1 starts at $2008, the data for

char 2 at $2010 and so on.

Okay, that's all I'm going to say about character graphics right now. You know the

basics, now all you have to do is to experiment and think up cool things to do with

character graphics.

Note that I haven't mentioned multicolour character graphics. Using multicolour, you

can get your characters to have 3 colours each, one of which is set in colour RAM,

and two which are set in $d022 and $d023. The colours in colour RAM are of course

different for every character, but $d022 and $d023 can't be changed for each

character.

5.5 Bitmap Graphics

Character sets are good for a lot of things, but if you want a picture that covers the

whole screen, a character set won't do, because you can't set every pixel on the

screen, using only $0800 bytes. There are 320 x 200 pixels on the screen in hires

mode, and 160 x 200 in colour mode, so you need about $2000 bytes to have total

control of the graphics on the screen.

26/63

However, if the picture you want to display is “simple” enough, ie. if large parts of it

are empty, or if it's highly repetitive, so that it could be drawn with a single

customized character set, you can of course just use a charset to display it, and you'll

save yourself $1800 bytes of memory. There are tools to convert a bitmap to a

character set + a screen memory, which of course requires that the information

contained in the bitmap will fit into a charset.

If you've understood how character graphics work, you shouldn't have any problems

understanding how to display bitmap graphics. I'll describe how you can display hires

graphics and multicolour graphics in the Koala Paint format.

The Concepts of Bitmap Graphics

When you display character graphics, you have to set $d018 to point to screen RAM

and character set. If you want to display a bitmap picture, you have to do almost the

same thing. You have to set the location of screen RAM (which is used for two sets of

colours for each character (yes, in a way you're still using character)) and of the

bitmap. The bitmap takes up almost $2000 bytes, and it has to be properly aligned,

so you can't put a bitmap at eg. $2800, it has to be at $2000, $4000, $6000 etc.

Before we go into the theory of how you display a bitmap, I'll give you an example,

and then I'll explain what it does. The example requires that you have a Koala picture

loaded at $2000. Koala pictures are usually loaded to $6000, so go into your monitor

and type l “filename”,08,2000. That will load your picture to $2000.

 * = $0801

 lda #$00

 sta $d020

 sta $d021 ; set border and screen colour to black

27/63

 tax

copyloop:

 lda $3f40,x ; copy colours to screen RAM

 sta $0400,x

 lda $4040,x

 sta $0500,x

 lda $4140,x

 sta $0600,x

 lda $4240,x

 sta $0700,x

 lda $4328,x ; copy colours to colour RAM

 sta $d800,x

 lda $4428,x

 sta $d900,x

 lda $4528,x

 sta $da00,x

 lda $4628,x

 sta $db00,x

 dex

 bne copyloop

 lda #$3b ; bitmap mode

 ldx #$18 ; multi-colour mode

 ldy #$18 ; screen at $0400, bitmap at $2000

 sta $d011

 stx $d016

 sty $d018

mainloop: jmp mainloop ; keep going…

28/63

As I still haven't explained everything about bitmap mode, this might not be all that

clear, but it's still a very small example program and it'll display a Koala picture just

fine.

We start by making the border and background black. This isn't actually accurate, as

the background colour is stored in the Koala format, so we really should have loaded

the value from $4711 and put it in $d021, but that's not really important.

Next we start copying stuff. Why do we do that. Well, we'll keep using $0400 as

screen RAM, so we'll have to copy the screen RAM, which, in the Koala format, is

located at $3f40, to $0400. That's easy, you've seen that one before. The same goes

for colour RAM, which starts at $4328, which will have to be copied to $d800.

When we have all the data in the right places, all we need to do is to tell the VIC chip

what mode to go into, and where it should read data. We tell it to go into bitmap

mode by setting $d011 to $3b, and by setting $d016 to $18 we turn on multi-colour

mode. And then we tell it to read screen RAM at $0400 and the bitmap at $2000, by

setting $d018 to $18.

The last line just loops forever, so that you get a chance to watch the picture.

Hopefully you've found a nice one.

If you don't know where to find a Koala picture, get a program like Amica Paint, Koala

Paint or Color-X16, and draw your own pictures.

The Screen Layout

The layout of the actual bitmap is a bit weird, especially if you're used to other

architectures, which have nice, linear bitmaps8). A C-64 bitmap isn't linearly

adressable, ie. you can't just count the pixels from left to right and index into it in an

easy way.

The data in a C-64 bitmap are indexed very much like a normal charset. The first byte

(in the above example $2000) is the top, leftmost byte. $2001 is the byte below that

29/63

https://codebase64.org/doku.php?id=base:demo_coding_introduction#fn__8

one, $2002 below that one, and so on, until $2008, which is the one to the right of

$2000. So, basically, it's as if you'd read one character from a charset, and put that

character in the top left corner of the screen, and then you read the next character

and put next to that one, and so on, until you reach character 40, which is below

character 0.

It's not really hard to understand, but it does make it a bit difficult to implement

efficient bitmap effects, like plotters. Think about it!

Displaying Bitmaps

Displaying a single-colour bitmap is just like displaying a multi-colour bitmap, except

that you don't use colour-RAM. Why? Because all you need is a background colour

and a foreground colour, and you can use the good old screen RAM for that. For

each byte in the screen RAM, you set the upper nybble to one colour value, and the

lower nybble to another value (or the same value, but then you won't see anything of

the bitmap).

The last paragraph might sound a bit cryptic, but just try it out. Get yourself a nice

hires bitmap (use some utility to create one, it should output a file that is 33 blocks

long). Load that bitmap to some $2000 aligned address (like $2000), set $d011 to

$3b, $d016 to $08 (single colour mode) and $d018 to $18. Then you can start poking

values into $0400 etc., to see what happens.

Does that sound too simple? It is simple.

30/63

5.6 Interrupts

Okay, so far we've learnt a lot of useful things for putting graphics on the screen (and

playing music, but that's almost too easy to mention). To sum it all up, we have all the

tools we need to write programs that display graphics and play music. Multimedia

programs, or something like that.

All the example programs above have suffered from one great problem: they have

been badly timed, and all movement (as well as the playback of the music) has been

jerky and inexact. We need to do something about that. You can't have a scroll text

that doesn't move smoothly, or jittering raster bars, because that's the definition of

lameness.

So, how do we do something about it? Well, we need to know a bit about interrupts.

You really need to know everything about interrupts, but we're not going to be that

complete here. We're going to be complete enough so that you can easily learn the

rest by reading your reference material and poking around in your computer yourself,

though. Wizardry isn't about knowing most of what there is to know, it's about being

able to setup interrupt handlers after 20 beers (trust me, that's not easy

Why Interrupts

I suppose we'll have to answer this question, although it might seem stupid. If you

just know how to turn of the CIA interrupts, you're safe from all the jittering and

flickering we've experienced so far. But there are more things you can do with the

help of interrupts, and you really need to know about them in order to have control

over your computer. You'll also need to know about interrupts to be able to use an

IRQ-loader, and if you're planning to ever write a program that's bigger than what will

fit in your computer's memory, you'll need to use a loader. And there's no excuse for

not using an IRQ-loader these days.

31/63

In this text, we'll concentrate on raster interrupts, because that's what you'll use most

often. We'll also go into NMIs a bit, because it's very useful to know about them. And

of course, if you've written a program that looks great and that people love, it can feel

pretty embarrasing if you can kill it just by pressing RUN/STOP + RESTORE…

What is an Interrupt?

A fair question to ask at this stage is what an interrupt is. They're a very simple, and

very efficient way of handling some things. They work pretty much like an alarm

clock.

Let's say you're going to bed after a long night of coding, and you have to get up at

eight in the morning, to go to school or work. What do you do? You set your alarm

clock to ring at eight, and then you can safely go to sleep, without having to worry,

knowing that the clock will wake you up at eight. Until then, you can sleep all you

want.

That's exactly how interrupts work: you set up an interrupt to wake up the CPU at

some time and tell it to do something special, but until then the CPU can do its

normal things. So, what you do when you set up an interrupt is to define when the

interrupt should happen and what should happen when the interrupt is triggered.

On the C-64, you have some different types of interrupts to watch out for. You have

two CIAs, which can both generate timer interrupts (tell the CIA to give you an

interrupt after X clock cycles), you have the VIC, which can generate raster interrupts

(generate an interrupt when we reach a certain raster line), sprite collision interrupts

(generate an interrupt when two sprites collide) etc.

32/63

How to Implement Interrupts

Yeah, so how do you set up a raster interrupt? It's actually very easy, so I'll just give

you some example code, and then explain it.

 * = $1000

 sei ; turn off interrupts

 lda #$7f

 ldx #$01

 sta $dc0d ; Turn off CIA 1 interrupts

 sta $dd0d ; Turn off CIA 2 interrupts

 stx $d01a ; Turn on raster interrupts

 lda #$1b

 ldx #$08

 ldy #$14

 sta $d011 ; Clear high bit of $d012, set text mode

 stx $d016 ; single-colour

 sty $d018 ; screen at $0400, charset at $2000

 lda #<int ; low part of address of interrupt handler code

 ldx #>int ; high part of address of interrupt handler code

 ldy #$80 ; line to trigger interrupt

 sta $0314 ; store in interrupt vector

 stx $0315

 sty $d012

 lda $dc0d ; ACK CIA 1 interrupts

 lda $dd0d ; ACK CIA 2 interrupts

 asl $d019 ; ACK VIC interrupts

 cli

33/63

loop:

 jmp loop ; infinite loop

int:

 inc $d020 ; flash border

 asl $d019 ; ACK interrupt (to re-enable it)

 pla

 tay

 pla

 tax

 pla

 rti ; return from interrupt

Now, if you're not used to using interrupts, that might look a bit weird. It works,

though, and I'm now going to tell you how. (Well, I'll try, anyway.

We start by turning off all interrupts, with an SEI instruction. The reason why we do

this is because if we get an interrupt in the middle of setting up interrupts, things can

get messed up and the program can crash. These things happen. Ever had a

program crash unpredictably? Sometimes it works, sometimes it doesn't? The

interrupt setup might be screwed up. Or there can be some other reason. Read the

code and see if you can find it.

So, anyway, after the SEI, the action begins. We start by turning off all CIA interrupts.

We do this by poking $7f into $dc0d and $dd0d. To find out what the value $7f

means, read some reference. At a later stage, you might be interested in finding out

what the individual bits of those registers do. We then turn on raster interrupts, by

setting the lowest bit of $d01a.

34/63

The next thing we do is to setup $d011, $d016 and $d018. You should recognize

those by now. We always have to initialize them, and I usually do it at the same time

as the interrupt setup. The only bit that's relevant in this context (interrupts) is bit 7 of

$d011, which is the 8th bit of $d012 (as we have more than 256 raster lines, but I've

already talked about that above).

So, let's move on to the next chunk of instructions, which includes $d012. We set a

new address in the interrupt vector, $0314. This address simply specifies where the

processor should keep executing code when an interrupt occurs. We point it to our

interrupt routine, int.

In the interrupt handler code, we don't do much. First we flash the border, by INC-inc

$d020 (and of course, this happens once every frame), then we ACK the interrupt

(set bit 0 of $d019, which I usually do with ASL $d019, for some reason (probably

because that's how it was done in the example that I learnt about interrupts from). If

we forget to do this, the interrupt will be triggered again, right after we return from this

interrupt code. So we have to tell the VIC that we've handled this interrupt, so that it

is cleared.

Then we have to restore the register contents from the stack (these are stored there

when the interrupt occurs), and then execute the instruction RTI, which returns from

the interrupt. Quite often you won't see exactly this code, but instead of the last six

lines you'll see a JMP to $ea31 or $ea81. $ea31 is the default interrupt handler,

which does this and that that you'll want if you're in BASIC, but you won't need that

crap when you're coding without BASIC, so skip it. $ea81 just contains the same

code as the last six lines in our program, so exactly the same thing happens, except

that we waste three clock cycles (for the JMP) and that we save 3 bytes of memory.

So it's a trade-off, kind of, but it's not often 3 clock-cycles or 3 bytes will bother you

very much, so who cares?

Of course you can't jump to ROM routines if you've switched out kernal ROM, so it's

a good idea to use the code above anyway.

35/63

There's a modification you can do to the code above, which might be nice to try, and

give you some further insight into how interrupts work. Instead of JMPing around in

the infinite loop (JMP loop), do RTS. And add JMP $ea31 instead of the last 6 lines. If

you start the program from BASIC, you'll see that your interrupt routine starts

executing, but you're still at the BASIC prompt, and can type in BASIC commands.

Cool, huh?

In the rest of the text, I will be a bit more restrictive with explaining details. If you've

come this far and understand most of it, and have tried typing in the programs and

changing them a bit, as well as making your own routines, you should be able to

cope with a bit less detailed explanations. If there's something you don't quite

understand, consult your references, write some code and see what happens etc.

And send me an email, telling me what you don't understand.

Playing music again

It should be trivial for you to alter the interrupt example program to play music. All you

have to do is to init the music before the interrupt initialization, and then do a JSR to

the play routine in the interrupt handler routine. If you can't remember how to do this,

check the example on playing music (without interrupts) above.

Using More Than One Interrupt Per Frame

Now, pretty often, you'll want to have several interrupts occur each frame. Let's say

you have some kind of raster bar effect, that's created by an interrupt routine that is

triggered at line $20, then you have a scroller that starts at line $e0. You can do this

in two ways (or more, but this is just an example): (i) just use one raster interrupt, and

do the old $d012 polling to wait for $e0, or (ii) use two interrupts.

There's nothing wrong with the first approach, except that you may want to do

something in the main loop as well (outside of the interrupts), and in that case you

36/63

don't want to sacrifice all the rastertime between the two effects by using them for

polling $d012.

So, we'll go for the second approach. Let's say the label for the first interrupt routine

is intraster and the one for the second one is intscroll. In the interrupt setup we'll put

the address of intraster in the interrupt vector ($0314) and set the value $20 in $d012

(to make the VIC generate an interrupt at line $20).

That's all very well, but if we don't do anything more, the interrupt at $e0 will never

happen. What we'll have to do is change the values of $0314, $0315 and $d012 in

the interrupt routines. So, at the end of the first interrupt routine (intscroll) we set

$0314 and $0315 to the address of intscroll and $d012 to $e0, before we return from

the interrupt. And of course, in the second interrupt routine, we'll have to set the

values back, so that they point to the first interrupt routine, and line $20.

If this sounds confusing and you're thinking “No, I'll just keep polling $d012 instead”,

then please read the above paragraphs again. It'll make your life so much easier. It'd

probably be a good idea to try to write a small program, using the ideas explained

here. Write two interrupt routines that do something simple, like change the

background colour, and check so that you can make them both work. To make it

more interesting, change the values of $d012 each frame (by adding or subtracting

one from the value). That way, you can make your rasterbars move up and down.

Stable Raster Interrupts

If you've tried out the above, especially changing the background colour on different

lines, you've probably noticed that the interrupts aren't stable; if the colour change

happens somewhere in the visible area of the screen, you'll see that it jitters a bit. It

might even jump a whole line up and down, if you're on a Bad Line.

The reason is that when an interrupt is triggered, an instruction is executing in the

CPU, and that instruction will have to finish before the jump to the interrupt handler

takes place. As you can understand, there's a variable delay here, eg. a NOP only

37/63

takes two cycles, and some memory manipulating instruction in an indexed

addressing mode might take 7 cycles.

This can be pretty irritating, and it can be pretty difficult to time some routines so that

they look nice. On the other hand, you can do pretty much, although your interrupts

aren't stable. For now, it should be sufficient to know that there are ways to make the

raster completely stable. You'll need a stable raster to do some advanced effects, like

splits (raster bars that change colour in the middle of a line) and opening the side

border. However, you can do stuff like opening the top and bottom border, sprite

multiplexers, raster bars, scrollers, displaying FLI pictures, FLD and all kinds of stuff

without having a stable raster.

Anyway, there are different ways to get a stable raster, and you'll want to learn it

eventually, unless you want to be doomed to code simple effects or ugly-looking

chunky crap effects (which sometimes don't seem to use any timing at all) for the rest

of your life. These different techniques all have their fans, so I'll go through them

quickly here:

 Double interrupts. This one uses two interrupts: the first one sets up the second one

and makes it happen when executing a NOP, so that the jitter is reduced to one

cycle, and then a simple branch instruction at exactly the right time, to remove the

last cycle of jitter. This technique seems to be very popular.

 Sync with sprite. This technique utilizes the way sprite data is fetched. What you do is

that you turn on at least one sprite, and at the right time, you execute some memory

manipulating instruction, which is stalled by the sprite fetch, which makes it end at

exactly the same time, a fixed number of cycles after the sprite data fetch is

complete. This might sound complicated, but it's a lot simpler than the double

interrupts method, and all you need to do is to turn on a sprite and do an INC at the

right time.

38/63

 Triggering a Bad Line. This one might have some undesirable side effects, but it's

very simple. All you do is trigger a Bad Line (eg. by executing INC $d011), and voila!,

you have a stable interrupt. It might produce some garbage on the screen, but it's

really simple. I discovered this one while coding a FLI viewer, and this is pretty much

the basis for FLI.

 Syncing with a Bad Line. I haven't tried this one myself, I just read about it in an log I

found somewhere on the web. Crossbow/Crest mentioned a method of getting a

stable interrupt by using an INC at the right moment on a Bad Line. Try it out

yourself.

My personal favorite is to sync with a sprite. I find it to be a very clean and nice way

of getting a stable raster, without all the hassle of using the double interrupts method.

Triggering a Bad Line probably isn't very good at all, but it simple and it works,

although it can have side-effects that aren't very nice. Syncing with a Bad Line is

probably a very good method, as Crossbow uses it.

NMIs

I won't go very deep into NMIs here, I'll mostly explain how you can get rid of the

problem with the RESTORE key. You can't just turn them off, because you can't do

that (that's why they're called non-maskable interrupts). What you'll have to do to

disable NMIs is the trigger an NMI and then refrain from ACKing it. That way, no new

NMIs can occur. The simplest way to do this is to setup a timer interrupt on CIA2

(which is the CIA that can generate NMIs), and just do an RTI in the NMI handler

routine.

You set up an NMI handler just like an interrupt handler, but instead of setting $0314-

$0315, you set the address in $0318-$0319, which is the NMI vector. Just set it to

point to a routine that returns, and does nothing more. It's as simple as that.

39/63

5.7 Detecting New/Old CIA 6526

6526 vs. 6526A

The 6526 (< 1987) triggers Interrupts one cycle after the timer ran out. The 6526A

(>=1987) triggers in the “right moment”.

6526 Detection

 sei
 lda #$35
 sta $01 // Disable IRQs, disable BASIC + KERNAL ROMs

 lda #<end1
 sta $fffe
 lda #>end1
 sta $ffff
 lda #<end2
 sta $fffa
 lda #>end2
 sta $fffb // Set IRQ/NMI vectors

 lda #$7f
 sta $dc0d
 sta $dd0d // Mask out all IRQ/NMI

 lda #$82
 sta $dc0d
 lda #$81
 sta $dd0d // CIA #1 Timer B and CIA #2 Timer A: Mask in Interrupt
Sources

 lda $dc0d
 lda $dd0d // Allow pending interrupts

 tsx // Store Stack-Pointer

 lda #0
 sta $dc06
 sta $dc07
 sta $dd04
 sta $dd05 // Set Timers (1 cycle)

 cli // Allow IRQ
 lda #%00011001

40/63

 sta $dc0f // Fire timer once
 bit $00

 // New CIA type IRQ is fired here
 inc CIA1isOLD
 // Old CIA type IRQ is fired here (delayed)

end1:
 sei
 lda #%10011001
 sta $dd0e // Fire timer once
 bit $00

 // New CIA type IRQ is fired here
 inc CIA2isOLD
 // Old CIA type IRQ is fired here (delayed)

end2:
 txs // Restore STACK Pointer
 lda #$7f
 sta $dc0d
 sta $dd0d
 lda #$81
 sta $dc0d // Restore CIA #1 Timer A for BASIC

 lda $dc0d // IRQ
 lda $dd0d // NMI

 lda #$37 // Enable IRQs, enable BASIC + KERNAL ROMs
 sta $01
 cli

 lda CIA1isOLD // Print result (at left upper Screen)
 sta $0400
 lda CIA2isOLD
 sta $0402
 rts

CIA1isOLD: .byte $00
CIA2isOLD: .byte $00

41/63

5.8 Interesting Effects

In the previous sections I have explained most of the basics that you need to know in

order to code your own program. You might not understand exactly how everything

works, but if you've written some code, using the stuff I've explained above, you

should have a fairly good grip on the basics.

However, although you now have most of the tools you need to create lots of effects,

you might not have figured out exactly how they work. In this section I'll give some

examples of cool effects. You can try implementing them yourself, or, even better, use

the same concepts to implement something different and more original.

I won't give you source code to write all these things. I don't think that should be

necessary. You'll also learn a lot by figuring our the details yourself. You can find

source code and more details about some of these effects, and others as well, in

early issues of Commodore Hacking and all three issues of Coders World (see the

References section below).

I'll try to sort these effects in order of increasing complexity, so the first ones should

be easy, and the later ones harder. But of course, that's individual. Anyway, text

scrollers and raster bars should be easier than displaying a FLI picture or opening

the side border.

Text Scroller

I'll start with this one, not just because it's a simple effect, but because it's so

fundamental in coding. If you can do a simple text scroller, you can then work on

making it more interesting, by adding colours, different sizes of fonts, animated fonts,

Y-moving scrollers etc.

Doing the basic scroller is easy. Of course you start by setting up an interrupt that

occurs a few lines before the actual text that should be scrolled. There you read a

variable, where you've stored the current value of $d016, which is the X-scroll

42/63

register. The three lower bits of $d016 control the X-scroll, so you have 8 steps of

scrolling, enough to scroll one whole character. With the value 0 in the three lowest

bits, you'll have your normal screen, and with the value 7, it will be scrolled 7 pixels to

the right.

So, what you'll have to do is to start at the value 7, and then decrement it by 1 (or 2,

3, 4 etc., if you want a faster scroller) every frame. When you already have an X-

scroll value of 0, you can't decrement it, you'll have to reset it to 7 again. At the same

time you'll have to move the characters in screen memory one step to the left, and

insert a new character in the character at the right end of the screen. Then you just

keep going.

As I've said, a text scroller is a simple effect, but writing your first one isn't necessarily

easy. So here are some suggestions from someone who can still remember the

hassle of getting a simple text scroller to work:

 Start by putting some characters on the screen and make the $d016 fiddling work.

The characters should move to the left for 8 frames and then flip back to their original

position and start moving to the left again. This happens pretty fast, so it's not easy to

see that everything is really correct, but if you get this effect, you're on the right way.

 When you've got that working, add a loop that copies characters from teh right to the

left on one line of the screen, eg. the first one, which starts at $0400 and ends at

$0427. That is, copy $0401 to $0400, $0402 to $0401 etc. And of course, add a new

value in $0427 each time. You should now have a basic scroll.

 Add a routine that reads from an area of memory where you've stored your scroll

text. Make sure it wraps at the end. You can do this by eg. storing the memory

position of the last character somewhere, or set an end mark, eg. $ff, at the end of

the text.

When you have a basic scroller going, you can add some colours to it (by changing

the values in colour RAM, $d800 to $dbe7). One thing that has been used a lot is to

have the outer characters have a darker colour than the central ones, which can

make it look like the characters are fading onto the screen.

43/63

You can of course to other things with colours, like move the colours with the

characters, so that each character has its own colour. Or you can have different

colours cycling through the scroller.

Then, of course, there are all sorts of things you can do with your scroller to make it

look more cool:

 Use your own character set, and it'll look a lot nicer (the ROM charset isn't very hot).

 Use a different sized character set, like 1×2 or 2×2.

 Make the scroller move at different speeds (by adding different values to $d016). Just

make sure you move the characters at the right time, so that it doesn't jitter.

 Use $d011 to move it up and down while it's scrolling from the left to the right. You

can use the same concept there, copying characters, to make it scroll more than 7

pixels in the Y direction.

 Use multi-colour characters.

 Use your imagination…

Raster Bars

I've already explained the basics of raster bars above: change $d020 and/or $d021

on every line. There are some issues you have to pay attention to to make it work

well. You don't actually need a stable raster to make it work, all you need is the

correct delay values.

The easiest thing is to do it in the upper or lower border. Then you'll only need to

change $d020, and there are no Bad Lines that mess things up for you. All you need

to do then is to write a loop that takes 63 cycles to execute (65 if you have an NTSC

C-64). In the loop you read a colour value from a table (indexed by the x or y

register), increment your index value, change $d020, do a delay, check if your index

value has reached a certain value, otherwise branch back to the top. You'll also need

to add some delay before the loop, to make it start at the right time.

It might seem a bit complicated to have to count the cycles that different instructions

take, but you'll learn it quickly, and it definitely pays off. Of course you'll need some

trial and error to get it to work the first times…

44/63

Some things can screw up the timing and make instructions take different amounts of

cycles. If you're using sprites, they'll steal a few cycles on each line where they're

displayed, so don't move sprites over your raster bars, at least not if they're changing

Y coordinates. That requires much more timing.

You'll also have to watch the page boundaries. A branch that crosses a page border

takes one cycle more to execute than normally. The same goes for indexed

addressing modes. Your usual LDA addr,X instruction usually takes 4 cycles. But if

addr is eg. $2080, and X is greater than $80, you'll cross the page boundary, and it'll

take 5 cycles instead. In some cases it's much better to use a monitor, instead of an

assembler, as you know exactly where the page borders are in your code.

By using different registers to count the times you do the loop and to index into the

colour table, you can make the colours in the raster bar roll. Or use the same

register, and alter the colour table itself each frame.

Opening the Top and Bottom Border

This is a simple trick, but it can be pretty cool to be able to put stuff in the upper and

lower border. Of course it's even more cool to open the side borders, and

conceptually that's equally simple, but it requires good timing.

To open the upper and lower border, you have the screen set up to display 25 lines of

text (by setting bit 3 of $d011). Then, on the last line of the screen (on raster line $f8,

$f9 or $fa), turn off that bit. The VIC will be fooled into not checking where to turn on

the border, as it “thinks” it's already on, and it won't turn it on. You have to set the bit

again, so that the VIC will be fooled again the next frame, but you'll have to wait a

couple of lines first, or you'll fool yourself instead.

You can display sprites in the upper and lower border, but not normal graphics. The

same goes for the side border. However, the last address in the VIC page ($3fff in the

default case, otherwise $7fff, $bfff and $ffff) will also be displayed, in black. So if you

have another background colour than black, and the value in this address is not 0,

45/63

you'll see a garbage pattern in the border area. You can actually use this for some

effects… Use your imagination.

FLD

FLD stands for Flexible Line Distance. With this routine, you can delay the display of

the next character line for an arbitrary amount of lines. Everything that is to be

displayed below is delayed, so you can scroll the whole screen down.

What you have to do is to delay the next Bad Line. A Bad Line is triggered when the

three lowest bits of $d011 match the three lowest bits of $d012. So what you do is

that you take the value from $d012, add a value to it, eg. 2, set the upper five bits to

0 (by using AND #$07), set the upper bits appropriately (ORA #$18 for text mode)

and STA $d011.

This means that $d012 and $d011 won't match on the next line. On the next line, you

do the same thing again. And then you keep going until you think it's time to display

the next text line. Of course you use a loop for this, and if you vary the number or

times you go through the loop each frame, you can make text lines scroll up and

down really easily. Combine it with a scroll text, and you'll have a scroll text that

moves up and down.

And of course, you can use this routine just to get rid of Bad Lines, which can be

handy if you want to do eg. colour bars on the main screen. Just do an FLD and

change $d020 and $d021 every frame, and you don't have to worry about Bad Lines.

Sprite Multiplexer

The principle of sprite multiplexers is very simple, but it can be a hassle to get a

working implementation sometimes. What you do is that you change the Y

coordinates of the sprites while they're being displayed, and as soon as the sprite is

finished, it'll get the new Y coordinate, which is a couple of lines below. Note that the

46/63

new Y coordinate has to be at least $15 greater than the previous value, or it won't be

displayed at all the second time.

It gets even cooler if you change the sprite pointers too, but that has to be done at

exactly the right time, because you can change the sprite data in the middle of a

sprite's display, and then it'll just look weird, unless you really know what you're doing

(it can be used for some advanced effects).

Use a sine table for the Y values, and find our where you have to change the

coordinates.

Tech-tech

You might already have figured out that you can do a simple effect by changing the

three lower bits of $d016 (the X-scroll) on every line. If you haven't tried it, you should

at least be able to understand what happens: each line will have its own X-scroll

value. By changing the X-scroll value in an ordered manner, you can make the

graphics wave back and forth. But you don't get more than 7 pixels worth of

difference between the lines, which is a pity…

You've probably seen real tech-techs (they're not so common these days as they

were around 1990), and they definitely have a greater difference than 7 pixels. You

might think that you can do that by moving the characters in screen RAM, but you

can't, because screen RAM is only read each 8th line. What you have to do is to

change the charset (using the four lower bits of $d018), to a new charset, which is

shifted one character to the right. You can fit 7 charsets (you need space for the

screen RAM too) into one VIC page (16 kB), which means you can make a 56 pixels

wide tech-tech. Not bad, huh? It can be a bit tricky to get it to work the first time,

though…

You can of course also change VIC bank (with $dd00), which means you can do the

effect with graphics, not just with a charset logo, or just get a wider tech-tech.

47/63

FLI, AFLI, IFLI

FLI is a graphics mode that gives you more colours per character than a normal

multi-colour pixel. To achieve this, you need 8 different screen RAMs, with different

colour values. The effect is achieved by triggering a Bad Line on every line ($d011)

and changing $d018 to point to a new screen RAM (but the same bitmap) each line.

You do this for 8 lines, then you start over again.

A normal FLI picture starts at $3c00. The area between $3c00 and $3fff is colour

RAM, which is copied to $d800 in the initialization. The area between $4000 and $5fff

is taken up by the 8 different screen RAMs, and $6000 to $7fff is the bitmap. So the

values you'll change between in $d018 are $08, $18, $28 and so on up to $78.

AFLI is exactly the same thing except that it uses hires mode. As hires doesn't use

colour RAM, an AFLI picture takes up $4000 bytes, and is laid out in the same way

as a FLI picture.

IFLI is just like FLI, except that you have two FLI pictures, which you switch between

every frame, as well as changing X scroll by 1 pixel. This is to give it the appearance

of more colours and higher resolution, by interlacing it.

In all of these formats you'll see the so called FLI bug, which means that first three

characters on every line are unusable. There's no way to get around this. In FLI and

IFLI, you just have to set the values for these characters to 0, and they'll be black. In

AFLI, they'll always be light grey, so if you want to have some other background

colour, you'll have to cover these three lines with sprites.

The FLI effect also has the side effect of giving you a stable raster, which is always

nice, of course.

Opening the Side Border

48/63

If you've got a stable raster, you can open the side border in exactly the same way as

you open the top and bottom borders, but instead of $d011, you use $d016, and

instead of once every frame, you have to do it on every raster line, where you want

the border to be opened. This isn't the first effect you should try to code, but if you've

got a stable raster, give it a try.

A hint: use DEC $d016 and then INC $d016. To see that you're in the right place (just

by the right border), use $d021 instead of $d020 when timing it.

Plasmas, Bumpmappers, 3D Effects

These aren't specific to the C-64, and you can find information about them in lots of

places. If you can do a plasma on some other platform, you can do a plasma on the

C-64.

The easiest (and ugliest) way to display it is to use 8×8, ie. a normal text screen,

where you change the colours of the characters. Another way you can do is to fill a

bitmap with a pattern of the values $55 and $aa, so that you get a mixture of two

colours in each 8×8 block.

4×4 is often used, and it uses a graphics mode called half-FLI, which forces a Bad

Line each 4th raster line. Combined with the right char data and two screen RAMs,

this gives you a screen with 80×50 resolution. It doesn't look very nice, but it can be a

nice programming exercise… And it's popular, although chunky graphics modes

seem to be going out of fashion. It's about time.

To do 3d effects with vector graphics, all you really need to know is how to put a pixel

on a bitmap screen and draw a line. Once you've done that, you just need to optimize

your code to make it smooth and nice.

A trick that is often used, to optimize all sorts of plotter routines, is to use a 16×16

chars area, where the first column has the chars 0, 1, 2, 3 etc. up to 15, the second

column has 16, 17, 18 etc. In this way, you get linearly indexable Y coordinates (0 to

127). The reason for using a 16×16 chars area is that it all fits into one character set.

49/63

You can make the area larger by shifting charsets in the middle, but that'll make the

plotter routine a bit more complicated.

The Rest

The rest you'll have to figure our yourself, or read about in other places. Of course,

as I've suggested above, variations of these basic effects can be made, and

combining two or more of them can give very nice results.

Of course, there might also be VIC tricks that haven't been discovered yet, although

it's getting less and less likely.

An Exercise

As I've stated before, you won't learn programming by just reading about it. You need

to write yourself. Before you start trying to use IRQ loaders and writing really

advanced effects, try to write a part that consists of the following things:

 A logo at the top of the screen. You can draw it yourself, using some graphics

program. Either use multi-colour mode or single-colour hires.

 8 sprites moving around the screen in some sine pattern. This might be a bit tricky

the first time you try to do it, but all you really have to do is to set up two tables, one

for the X coordinates and one for the Y coordinates, and assign each sprite an offset

into the tables. Then change these offsets each frame, and just read the values from

the tables and poke them into $d000, $d001 etc. The easiest thing is of course to use

tables that are $100 bytes long.

 A scroll text at the bottom of the screen.

 Raster bars in the top and bottom border. You don't have to open the border to do

this, you just have to change $d020.

 A tune playing. You don't have to go through the hassle of learning to use a music

editor, just rip a tune from some other program. As stated earlier, they're usually

50/63

located at $1000, and are often shorter than $1000 bytes, so often all you have to do

is to start the program, reset, go into the monitor and save the area from $1000 to

$1fff. You should of course familiarize yourself with some of the tools, so don't forget

to pack and crunch your program, so that you can just load it and type RUN to start it.

See the Tools section below.

51/63

5.9 Tools

In this section, which maybe should have been called an appendix, I'll go through

some tools you'll need to use. There are lots of free tools available on the sites and

the web, and if you don't have Internet access, you can get them from your contacts.

If you don't have any contacts either, send me a couple of floppies and you'll get

them back, filled with nice tools. My address is at the end of this document.

Cartridges

You need one of these. Without a good cartridge, your life is going to be a lot harder.

The most popular carts are the Action Replay series, in particular version VI. Those

can be a bit hard to come by, though, so you might have to stick to a Final Cartridge,

or some other cart. The most important features are a fast loader an a monitor. If you

have those, the cart is pretty okay. You need the monitor to move things around in

memory, debug code etc. And well, you really can't live without a fastloader…

Packers and Crunchers

Before you release something, you want it load as quickly as possible, and to take as

little disk space as possible. To achieve this, you use a packer or a cruncher. For the

best possible result, you use both.

Packers use run-length encoding (RLE), which is a simple compression technique.

What it does is to check for continuous sequences of the same character, and

replace those sequences with that character and the count (marked up by a special

markup character).

Crunchers are more advanced, slower and give better results, because they use a

more advanced algorithm, which checks for common sequences in the data, and

replace those by references to earlier identical sequences. If you think crunching

52/63

takes too long time, try getting an REU (Ram Expansion Unit) and a cruncher that

uses it, as that can improve crunching speed a lot.

If you have a means to transfer stuff between your C-64 and a PC or Amiga, you

might be interested in checking out Pasi Ojala's PuCrunch, which crunches your C-

64 files on the PC or Amiga side. Of course it's very fast, and it also gives very good

results.

Some packers (eg. Sledgehammer) let you link all the files that you want to pack.

This can be nice, although I prefer the method of saving the whole memory area that

I use and pack that. It's a matter of taste, I guess.

IRQ loaders

An IRQ loader is a loader that does the loading in the main loop, without disturbing

your interrupt routines. So it can load while you're displaying scrollers, rasterbars and

sprites on the screen. Of course, the more raster time that is available, the faster your

files will be loaded.

Most IRQ loaders work the same way, but some of them don't work on all drives, and

some of they are faster. Some also offer decrunching on the fly, which means you

won't have to take care of decrunching yourself, after the file is loaded. Just load it

and use the data right away.

You usually have an init routine, which just sets up the drive, and which can then be

overwritten (to save memory), and then you have the loader routine, which you'll

have to save until you've loaded the final part. There's usually some documentation,

which will tell you the details of how to use it.

Sprite, Char, Graphics editors

Well, if you're going to make your own graphics, you need editors to produce them.

Everything you need is available. If you have the opportunity, get your hands on

53/63

everything you can find and try everything out. After a while you'll have found some

good editors, that you can use. Of course, this goes for all kinds of tools.

The basic stuff you'll need is editors for multi- and single-colour bitmaps, fonts sprites

etc. There are also all sorts of conversion programs, to convert between different

formats. And as if that wasn't enough, there are also editors for special purpose

formats, like combinations of bitmaps and sprites. Some of them can even give you

ideas for new effects…

Sine editors etc.

You'll need a sine editor to produce nice sine tables, to use for sprite movements,

scrollers, plasmas and what have you. Most of them offer the same features, so just

check out a few and you'll get what you want.

Some people don't use sine editors, but write small BASIC programs instead. That

gives you more flexibility, of course. Here's a small example from BlackJack:

10 L=256: REM length of table

20 X=10: REM amplitude/2

30 A=1024: REM address

40 FOR I=0 TO 2*PI STEP 2*PI /L

50 : POKE A,SIN(I)*Y+Y

60 NEXT

He also adds: “It's pretty easy to add stuff between line 40 and 60 to split a larger

value into “X div 8” and “X mod 8” for scrolling big logos or similar things.” If you want

more interesting sine movements, you'll have to change line 50 (the SIN(I) part).

Music editors

The most popular music editors still seem to be DMC and the JCH editor. JCH's

editor works more like a tracker, while DMC is a more traditional C-64 music editor,

54/63

where you only see one sequence at a time. The both offer full sound editing

capabilities, and the players offer decent rastertime and memory usage.

Some less used editors are Sidwinder by Taki/Natural Beat, which has a very

optimized player, that takes up very little raster time, and EMS, by Odie/Cosine,

which is, as far as I can tell, just as good as DMC and JCH.

A new editor that is meant to be as simple as possible to use is Odintracker.

Unfortunately it doesn't have a very good packer, so the tunes take up huge amounts

of memory. This might change, of course.

Text Editors and Scroll Text Writers

In addition to the above, you need text editors, to edit your scroll texts and other

texts. Some text editors let you set the size of the pages, which can be handy, if

you're using fonts of non-standard sizes, or only use parts of the screen to display

text. Scroll text writers are used for (surprise) writing scroll texts, and are pretty

similar to text editors.

Noters

Noters are used for writing notes to contacts and notes for releases. Personally I

think it's cooler to produce a special note for each release, but for small releases you

can always use a standard noter. Which one you choose doesn't really matter, as

long as it can display text.

Other Tools

There are other kinds of tools as well, but you'll have to discover those for yourself.

Generally, if you find that you need a tool for something, it's pretty likely that

someone else has already written it, so it's just a matter of finding it…

55/63

5.10Common Pitfalls

I put this section near the end of the document, because it's supposed to be more

like a reference section. Whenever you get errors that seem mysterious, things that

shouldn't happen, you can check here and see any of the things pointed out might be

responsible for your problems.

Final Cartridge

I don't know exactly what kinds of problems you might get with a Final Cartridge, but

it's always a good idea to try your programs with the cart removed if you're using a

Final Cartridge. If you get different results with the cart removed, you know that your

problem is cartridge related. If you have any details to share about Final Cartridge

problems, please get in touch!

Graphics at $1000 or $9000

If your sprites (bitmaps, charsets etc.) look like they get their data from the standard

CBM charset, you've probably put them in the memory between $1000 and $1fff or

$9000 and $9fff. You can't use these areas for graphics, because whatever you do,

the VIC will always see the standard charset in these areas. This is probably why the

music is almost always placed at $1000…

Garbage in Vertical Border or Behind FLD

If you see black garbage in the top and bottom border or on the screen, while doing

an FLD, and don't know how to get rid of it, simply clear the last byte of the current

VIC bank, ie. $3fff for the first bank, $7fff for the second, and so on. Be warned

though, that doing this without thought might give you other problems. If you have

code in that memory position, setting $3fff to 0 might later crash your program, or just

make it misbehave.

56/63

Everything Works Until I Pack It!

So you get weird bugs after packing your program? One possibility is a buggy

packer. Another is that you're using un-initialized memory. The situation won't be the

same after packing, as the memory positions you're counting on always being set to

0 might now have some other value.

If you think the packer or cruncher you're using is buggy, try another one. If your

program looks different with different packers and crunchers, stick to the ones that

others recommend. It's not likely that eg. Sledgehammer II or The Cruncher AB have

bugs. People have used these tools in thousands of products, so if they'd had bugs

people would have discovered and fixed them.

57/63

6 A Few Words About Optimization

As a general rule of thumb, you want the screen to be updated each frame, even if

you do effects that use complex computations. With some effects, this isn't trivial. If

you've written a nice effect, but the computations take more raster time than what's

available in one frame, you have to optimize your code, or live with an effect that

doesn't look as nice as it could have.

6.1 What to Optimize

There's a lot to be said about optimization, and I can't cram it all into a document like

this. Furthermore, not every optimization is applicable to C-64 code.

If you ask a computer scientist, he or she will tell you that you should first improve

your algorithms, and then, if it's still necessary, improve the constant times that each

iteration takes. This makes perfect sense, if you want to sort 10000 numbers, you

shouldn't spend time optimizing your bubble sort routine, but instead implement some

faster algorithm, like quick sort or merge sort.

But the algorithm usually isn't the problem with effects. The algorithm itself is most of

the time pretty straightforward, and the problem is to get each computation as fast as

possible. There's no way to decrease the number of iterations, but instead you have

to decrease the time each iteration takes. This is the common case, I'd say, but there

are lots of exceptions.

6.2 How to Optimize Computations

So, how do you optimize computations written in 6502 machine code? There are lots

of different ways, and I'm no expert, but I'll share some simple tricks, and hopefully

you can use them and invent your own techniques for making your code run faster.

58/63

The basis of optimizing a computation is of course to decrease the time it takes, ie.

decrease the number of machine cycles that each computation takes. Each

instruction takes a few cycles to execute. You'll need a table with the timing for the

different instructions.

Removing Instructions

So the first rule of thumb would be: remove all unnecessary instructions. All

instructions take a few machine cycles to execute, so by removing some of them,

you're speeding up your code. An example of an instruction that can sometimes be

removed without affecting the result is CLC. Read through the critical section of your

code and try to find instructions to remove.

Substituting Instructions

Sometimes you can rewrite a simple sequence of instructions to execute faster.

Imagine that you want to increment a byte in memory, and use this sequence for it:

 ldx var

 inx

 stx var

This is pretty bad, at least if you're not actually using the value afterwards. The above

code takes 4+2+4 = 10 cycles. If you'd just used a simple INC var instead, you would

have saved 4 cycles!

59/63

Loop Unrolling

Loop unrolling means that you optimize away the overhead that's inherent in all

loops, ie. the code that changes and checks a counter and branches. Let's say you

have the following loop in a speed critical section of a program:

 ldx #$00 ; 2 cycles

loop

 inc table,x ; 7 cycles

 dex ; 2 cycles

 bne loop ; 3 cycles

If you count the cycles in the above code, you'll see each iteration through the loop

will take 12 cycles9). It's executed 256 times, which means that the total number of

cycles used for the above code is 256 * 12 + 2 = 3074 cycles. That's quite a lot of

raster time!

Let's unroll the loop and see if we can get it any faster… The code will look like this:

 inc table ; 6 cycles

 inc table+1 ; 6 cycles

 inc table+2 ; 6 cycles

 inc table+3 ; 6 cycles

 inc table+4 ; 6 cycles

 .

 .

 .

 inc table+253 ; 6 cycles

 inc table+254 ; 6 cycles

 inc table+255 ; 6 cycles

60/63

https://codebase64.org/doku.php?id=base:demo_coding_introduction#fn__9

It's pretty obvious that this piece of code will need lots of more storage space (three

whole pages), but let's say that we have lots of free memory, so that isn't a problem.

What about the execution time? Well, each instruction takes 6 cycles, so we'll use 6 *

256 = 1536 cycles. The used raster time is halved!

Of course, you won't gain as much as this in the usual case, but there's a lot of time

to spare with this technique.

Use the Zero Page

An LDA or STA to a normal memory address takes 4 clock cycles, but if you use an

address in the zero page, they only take 3 cycles. Need I say more? Maybe, so here

goes: use the zero page!

Using Tables

Why do people use pre-calculated sine tables? Because that means they don't have

to do the costly sine calculations in real-time. That shouldn't be news to you. But if

you think about it for a while, you might realize that you can use tables for lots of

stuff. Generally, if you have some kind of complex calculation, you can use lookup

tables somewhere. If you're writing complex stuff with lots of shifts here and there,

you can probably re-write that code to run in half the time by using a table.

6.3 Other Optimizations

The above techniques are just meant as examples of how to optimize code. The

general idea should be pretty clear by now: do everything you can to make your code

faster. Read through it and try to find ways to make it faster. Use tables, unroll loops,

remove crap that's not necessary.

61/63

6.4 Other Ways to Make Code Faster

There's of course a lot in truth in the rule that you should first optimize your

algorithms, and then the constant factors. Don't think that there's no better way of

achieving an effect than to use brute force. You can always cheat in some smart way,

use data that makes the job easier and the code run in half the time.

6.5 Re-using Stuff

In some cases you can reuse results of computations in smart ways. If you realize

that your code is, for some reason, computing the same value twice each frame, and

the calculation takes some time, store the value in a table and just look it up the next

time you need it.

Re-using stuff can even be as simple as plotting the same point in different places on

the screen.

62/63

Contacting the Author

Linus Åkerlund

Kantorsgatan 38

S-75424 Uppsala

Sweden

Copying this document

I'll try to keep this document as available as possible. For that reason, I'll release it

into the public domain. Do what you want with it.

63/63

